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We investigate a new mechanism for instability (named divergent instability), 
characterized by the formation of azimuthal cells, and find it to be a generic feature of 
three-dimensional steady axisymmetric flows of viscous incompressible fluid with 
radially diverging streamlines near a planar or conical surface. Four such flows are 
considered here: (i) SquireWang flow in a half-space driven by surface stresses; (ii) 
recirculation of fluid inside a conical meniscus; (iii) two-cell regime of free convection 
above a rigid cone; and (iv) Marangoni convection in a half-space induced by a point 
source of heat (or surfactant) placed at the liquid surface. For all these cases, 
bifurcation of the secondary steady solutions occurs : for each azimuthal wavenumber 
m = 2,3, ... , a critical Reynolds number (Re,) exists. The intent to compare with 
experiments led us to investigate case (iv) in more detail. The results show a non- 
trivial influence of the Prandtl number (Pr):  instability does not occur in the range 
0.05 < Pr < 1 ; however, outside this range, Re&) exists and has bounded limits as 
Pr tends to either zero or infinity. A nonlinear analysis shows that the primary 
bifurcations are supercritical and produce new stable regimes. We find that the neutral 
curves intersect and subcritical secondary bifurcation takes place ; these suggest the 
presence of complex unsteady dynamics in some ranges of Re and Pr. These features 
agree with the experimental data of Pshenichnikov & Yatsenko (Pr = lo3). 

1. Introduction 
In this paper, we investigate a new instability mechanism for three-dimensional 

steady flows of viscous incompressible fluid with radially divergent streamlines near a 
planar or conical surface. Bifurcations of initially axisymmetric flows lead to the 
appearance of secondary steady solutions of the Navier-Stokes equations ; the 
corresponding flow patterns display the presence of azimuthal cells. The first indication 
of such an instability mechanism was found in the planar source flow (Goldshtik, 
Hussain & Shtern 1991). This source flow does not possess well-known conditions for 
instability such as a jump or an inflexion point in the velocity profile, or unstable 
stratification of swirl; hence, this is definitely not a case of the Helmholtz, Rayleigh or 
Taylor instability. We call this divergent instability. This instability, inertial in nature, 
is a kind of inner separation caused by an unfavourable pressure gradient. The flow 
tends to move away from the regions of increased pressure, resulting in the splitting of 
the initially azimuthally uniform flow into a few separated radial jets. The present 
study explores if this instability is generic and strong enough to occur in non-planar 
flows where the divergence takes place only in a part of the flow region and boundary 
conditions can provide the stabilizing influence. 

As examples of such flows, we have chosen the conically similar jet-like flows (see 
Goldshtik & Shtern 1990a). In particular, we study: (i) the SquireWang solution 
(Squire 1952; Wang 1971,1991) which models the oceanic motion induced by a tanker 
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crash (figure 1 a) ; (ii) generalization of the previous solution for conical regions with 
a free surface (figure 1 b) which models recirculation of a liquid in the conical meniscus 
of an electrified needle used for electrosprays (Hayati, Bayley & Tadros 1986; Bayley 
1988); (iii) a two-cell flow above rigid cones (figure 1 c) which models free convection 
near a glacier (Goldshtik & Shtern 1990b); and (iv) Marangoni convection in a half- 
space induced by a point source of heat or surfactant placed on the surface of a liquid 
(figure Id). 

Three reasons are behind such a choice of flows. First, the divergent instability is 
expected to occur in these flows as the streamlines diverge radially near a planar or a 
conical surface. Second, these flows are exact analytical solutions of the equations 
considered (the solution of Bratukhin & Maurin 1967 is the only known analytical 
solution of the Navier-Stokes and heat equations for the nonlinear Marangoni 
problem), which simplifies the stability analysis. Third, results from an experiment on 
Marangoni convection (Pshenichnikov & Yatsenko 1974) seem to contradict the exact 
solution; our objective was to resolve this contradiction. 

The governing equations and boundary conditions for the conically similar class of 
flows are introduced ($2), followed by a review of the analytical solutions for the basic 
axisymmetric flows ($ 3), Pshenichnikov & Yatsenko’s experiment ($4) and the problem 
formulation for finding the neutral curves ($ 5).  Next, an analytical and numerical study 
of bifurcation in flows (i)-(iv) is presented in &6, 7.1, 7.2 and 8 respectively. The 
asymptotic behaviour at high Pr for the Marangoni convection is discussed in $9, 
where we deduce the limiting boundary conditions ($9. l), calculate the limiting Re, 
($9.2), derive the asymptotic law at large m (§9.3), and calculate the neutral curves 
($9.4). A nonlinear analysis of bifurcation in the Marangoni convection ($ 10) reveals 
prominent features of the secondary regimes such as the supercritical nature of the 
bifurcations as well as the effects of the subharmonic resonance. Finally we discuss 
($ 11) and list ($ 12) the main results. 

2. Problem formulation 

are the Navier-Stokes equations, 
First, we will formulate the problem for the general case. The equations of interest 

(1) 

and the heat equation, V - V T  = KAT, (2) 

1 
U - V U  = - -VP+VAV,  

P 
V * V  = 0, 

for a viscous incompressible heat-conducting fluid. Equation (2) is analogous to a 
species diffusion equation, where temperature T and the thermal diffusivity K are 
replaced by the species concentration and the mass diffusion coefficient respectively. 
Density p ,  kinematic viscosity v, and K are assumed to be constants, while surface 
tension r is assumed to be a function of temperature or surfactant concentration (see 
Levich 1962). We use the linear approximation 

(3) 
where rm and T, are values of r and T far from the source. The surface stresses are 
related to the temperature gradient by 

where the subscript n corresponds to the normal direction and the subscript j 
corresponds to any direction tangent to the liquid surface. In the experiment by 
Pshenichnikov & Yatsenko, the surface deflection was small (due to gravity and surface 

= r, - y( T- Tw), 

7,j = - y(VT),, (4) 
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FIGURE 1. Sketches of the basic flows : (a) Squire-Wang flow (the coordinates and a typical streamline 
are shown); (b) flow in a conical meniscus of angle 8,; (c) convection above the rigid cone, and ( d )  
Marangoni problem (typical streamline (left) and isotherm (right) are shown). 

tension) and there was no visible deformation of the surface; this led us to neglect 
deformations of the surface. Heat (mass) exchanges across the surface are also 
neglected in accordance with this experiment. This implies that the normal velocity and 
the normal projection of the temperature gradient at the surface are both zero, i.e. 

We also assume that far from the source the fluid is at rest and T = T,. 
Equations (1)-(2) and boundary conditions (4)-(5) admit conically similar solutions, 

which suggest representations for velocity tc, pressure p and temperature T in the 

u, = 0 ,  and (VT), = 0. ( 5 )  
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where ( r ,  0, #) are the spherical coordinates; r is the distance from the origin where the 
source of heat is placed; B is the polar angle between the radius vector and the surface 
normal - we will use 

x = cos8 

instead of 0 to simplify the analysis; # is the azimuthal angle around the normal 
direction (figure 1 a); c is a scaling constant; and u, y ,  r, g ,  and 8 are the dimensionless 
functions. Note, there are no intrinsic velocity and length scales in the conical flows; 
thus introduction of v / r  as a velocity scale is useful for comparing the results of the 
various problems considered here. Substitution of (6)-(7) in (1)-(2) shows that all terms 
are proportional to rP3 and yields 

(8 a) 
ru# - u4# 

(1-x2)u , ,  = ( 2 x - y ) u X - ( u + 2 ) u + 2 F +  1-x2  ’ 

a,, - Pr r8, 
1-x2  ’ (1 - xz)  8,, = 2x8,  - Pr ( y 8 ,  + u9) - 

r 2g + y 2  + r2 
2(1 -xZ) ’ y ,  = US&, and F = u- 

where the subscripts denote differentiation with respect to the corresponding variables ; 
the auxiliary function F is introduced instead of g to simplify the analytical as well as 
numerical study; and Pr = V / K  is the Prandtl number. Note that formulation (8) 
reduces the number of independent variables from three to two. 

At the surface x = 0, boundary conditions (4) and ( 5 )  are transformed to 

y = O ,  8,=0,  u x = - M r 8 ,  and r,=Mr8,,  (9a, 4 
where Mr = yc/(pv2) is the Marangoni number. In the purely hydrodynamic problems, 
since u, is non-zero for the basic flows, the boundary conditions for disturbances 
assume no stress at the surface; hereafter they are referred to as stress-free boundary 
conditions. 

For conical regions (9a-d) are applied on the cone surface x = x,. 
For the problem with a point source of heat, a total heat flux q is given by 

where 

k is the thermal conductivity, and angle brackets denote averaging with respect to the 
azimuthal angle $; e.g. ( 8 )  = (1 /27c) SF 8 d#. The value of q is assumed to be given. If 
9 is normalized so that qd = 1, then Mr = yq/(2nkpvZ). In numerical computations, qd 
is first evaluated by assuming (8) = 1 at x = 0; then the normalization qd = 1 is 
achieved through dividing 8 by qd. 

A solution of (8)-(9) must be periodic with respect to q5 (having a period of 2n) and 
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regular on the axis x = 1 .  This requirement of regularity, though physically obvious, 
is mathematically non-trivial as the coefficients of (8) have singularities at x = 1. In 
particular, the regularity implies 

(1 1) 
Requirements (9)  and (1 1) provide eight boundary conditions necessary to solve (8). 

y = r= 0, and u and 9 bounded at x = 1 .  

3. Axisymmetric solutions 
We will study stability and bifurcation of axisymmetric flows; the solutions arrived 

at are cited later as basic solutions. For a flow independent of q5, it follows from 
(8k(11) that r 3 0, F = const, and ya = u; hence, (8a) becomes uncoupled and can be 
integrated analytically (Squire 1952). The solution is 

A = +y),  p = i(1 -y) ,  y = (2Re+ l);, 
where Re = r(v,),/v is the Reynolds number, and the subscript c denotes a value of the 
radial velocity at the cone boundary x = x, (for the planar boundary, x ,  = 0). 
Introduction of this particular form of Re is convenient for comparison of the stability 
of the various flows considered here. The divergent motion near the boundary 
corresponds to Re > 0 and the convergent motion corresponds to Re < 0. Most of our 
results are for Re > 0. 

The axisymmetric case (8 c)  also has the analytical solution (Bratukhin & Maurin 
1967) : 

The surface temperature 9, is defined by the condition qd = 1. 

obtain Mr9,  = 2Re. For Pr = 0, when 9 = 9, = 1, this becomes 

9 = 9,[(A/y) ( 1  + x)” - &/y)  (1 + X ) h ] - z P r .  (13) 

Differentiating (12) and using x ,  = x = 0,  we have u,(O) = - 2Re. Then from (9 c) we 

Mr = 2Re. (14) 
In the limiting case, Pr+ co, 9 tends to zero everywhere except possibly at x = 0. 

Near x = 0, the approximation y = xRe together with (13) and the condition qd = 1 
yields 

9 = 9,exp(- iPex2) ,  and 9, = __ ; 
(n:e)i 

where Pe = Pr Re is the PCclet number. Therefore, for Pr >> 1 we have 

Mr2 = 2nPr Re3. 

The relations (14), (16) are essential to compare our results with those of Bratukhin & 
Maurin (who have used A = 2Re), with those of Wang (who used B/v = Re), and with 
experimental data by Pshenichnikov & Yatsenko (who used Q = 2nMr). 

( 1  6 )  

4. Prior experimental evidence 
A major motivation for the Pshenichnikov & Yatsenko experiment was to provide 

a direct comparison with the theoretical solution by Bratukhin & Maurin (1967); 
however, they observed a different flow pattern than that predicted by the theoretical 
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FIGURE 2. Set-up of the Pshenichnikov & Yatsenko experiment for Marangoni convection. A 10 YO 
alcohol-water solution flows in through tube (2) in the cylindrical pan (1) filled with distilled water. 

FIGURE 3. Two-cell regime of the Marangoni convection (top view). 

solution. Since Pshenichnikov & Yatsenko’s results are closely related to our analysis, 
and taking into account that their publication is not easily accessible, a brief review of 
their experimental results seems necessary. Figure 2 shows a schematic of the set-up. 
Distilled water fills the cylindrical pan (1) of 280 mm diameter and 40 mm height. A 
10 % alcohol-water solution flows in through the thin capillary tube (2) at an extremely 
slow flow rate (from 0.0003 to 0.1 g/s). Even though heating is due to dissolution, the 
thermocapillary effect is 500 times weaker than the surfactant action and can be 
neglected. Aluminium powder and time-lapse photography were used to visualize flow 
patterns. At low flow rates, a two-vortex regime exists (figure 3, top view). The number 
of vortices becomes 4, 6, 8 (figure 4) and 10, as the flow rate is increased gradually. As 
the flow rate decreases, the number of vortices also decreases; however, critical flow 
rates (corresponding to transitions between the regimes) are less than those when the 
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FIGURE 4. Eight-cell regime (top view). 

flow rate increases. For instance, the four-cell regime appears at Q+ = 2.7 x lo6, but 
disappears (when the flow rate decreases) at Q- = 1.9 x lo6. The Schmidt number is 
lo3, so the Re, calculated with the help of (16), are Re+ = 310 and Re- = 240. Thus, 
the transitions between regimes with different cell numbers have a hysteretic nature. 
When the flow rate increases, unsteady regimes are observable in some ranges of Q near 
its critical value, where the cell number alternates randomly in time. 

5. Linear analysis 
To study stability, it is necessary to consider how the disturbances develop in time 

and space. Since, in general, the disturbances are not self-similar, this problem is rather 
complex for conical flows. In addition, the existence of a singularity at r = 0 in the class 
(6)-(7), together with the fact that a general theory of stability and bifurcation for 
singular solutions has not yet been developed, enhances the complexity of the situation. 
However, bifurcations of the new solutions of the reduced system (8) can be studied 
rather easily by well-known procedures. Here we solve this bifurcation problem, and 
then discuss the stability of the solutions, assuming that the connection between 
stability and bifurcation is the same as for non-singular solutions. 

The difference between two steady solutions may be considered as a neutral 
disturbance. This disturbance becomes infinitesimal at the bifurcation point Re = Re,. 
The corresponding spectral problem of the linear stability theory (where disturbances 
have a factor exp (At), h being a real number) has a solution with h = 0 at Re = Re,. 
Function h(Re) either changes its sign at Re = Re,  (signifying instability) or merely 
touches the abscissa. The latter case is not robust and, hence, not expected at arbitrary 
values of other parameters such as Pr and x,. 
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A detailed investigation of the connection between stability and bifurcation 
characteristics already exists for planar flows (Goldshtik et al. 199 1 ) .  This investigation 
shows that the spatially and temporally developing disturbances are not self-similar 
and have different singularities ; nevertheless they undergo transitions between the 
primary and secondary self-similar solutions. The same is expected to occur in the 
three-dimensional case considered here; thus, this study will be confined to that of 
neutral disturbances and established secondary regimes only. 

The necessary condition for bifurcation is the existence of a non-trivial solution of 
(8) linearized near the basic solution. The basic solutions (12) and (13) do not depend 
on q 5 ;  hence the linearized equations have ‘normal mode’ solutions for disturbances, 
which are the Fourier harmonics with respect to $ with period 27c. Taking into account 
an arbitrary phase shift, we look for a solution in the following form: 

= ub(x) + cos (md), y = Yb(X) + y l (x)  cos (m$), 
F = F,(x) + F,(x) cos (mq5), (17) 
9 = 8 b ( X )  + 9 , ( x )  cos (md), 
and r = T,(x)  sin (m$), 

where the subscripts b and 1 correspond to the basic solution and the disturbances 
respectively; and the representation for r follows from (8e). Substituting (17) in (8), 
and neglecting terms which are nonlinear with respect to the disturbances, we obtain 

m2u1 
1 - x 2 ’  

(1 -2) u; = (2x-y , )  u; - u;y1 -2(u, + 1 )  u, + 24 +- 

m29, (1 - x2) 9;’ = 2x9;  - Pr(y ,  9; + u, 9, + 9;y1 + 8, ul) +- 1 - x 2 ’  

( 1 - x 2 ) F ;  = mr;-- m2y1 and y’, = u,+- mr,  1 -x2’ 1 - 2 ’  

where the prime denotes differentiation with respect to x .  The boundary conditions at 
the surface are, from (9)  and (17), 

yl=O, 9 ;=0 ,  u;=-Mr9,,  and r ; = - m M r 9 ,  at x = O .  (19) 

For the Squire-Wang problem, we use (19) with Mr = 0 and 9, 0. For the flow with 
a conical boundary, the conditions (19) are used at x = x,.  The disturbances at the axis 
must satisfy 

Here u1 and 9, need to be zero to make u and 9 single-valued at x = 1. 
Obviously, the problem (18E(20) has a trivial (zero) solution. To find a non-trivial 

solution, the following algorithm is adopted. In addition to (19), we choose F, (O)  = 1 
(normalization) and some tentative values of rl(0), ul(0) and 9,(0). We then integrate 
(18) as an initial-value problem from x = 0 to x = x f  = 1-6. As a rule, we choose 
E =  0.001 to avoid the singularity at x = 1 .  We have occasionally checked that 
decreasing E further does not change the calculated parameters up to at least three 
digits. The next step is to select rl(0), ul(0) and 9,(0) using the shooting method to 
satisfy the conditions r l ( x f )  = ul(xf)  = 9 , ( x f )  = 0. This linear problem has a unique 

y 1 = r l = u 1 = 9 1 = 0  at x = l .  (20) 
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solution. Finally, we study y,(x,) as a function of the relevant parameters, say Re or 
Pr, and look for the zeros of this function that are identical with the critical values (Re, 
or Pr,) .  

6. Instability of the Squire-Wang flow 
6.1. Numerical results 

The calculations become simpler for a purely hydrodynamic problem - in particular, 
for the Squire-Wang flow (figure la) .  The divergent instability with respect to 
disturbances corresponding to m = 1 does not occur; however, a countable infinite set 
of Re, exists corresponding to m = 2,3, ... . The values of the first nine Re, are 

m 2 3 4 5 6 7 8 9 1 0  

Re, 18.92 33.83 52.43 73.5 99.7 130 164 202 244 

The divergent instability does not occur in the convergent flow, i.e. for Re -= 0. With 
increasing Re, the first instability occurs at m = 2. This disturbance mode begins to 
grow for Re > 18.92. Figure 5 shows eigenfunctions for Re, = 18.92. Near the free 
surface, the disturbance velocity field has a four-vortex flow pattern described by 

V v 
v, = - u,(O) cos (24), vc = - I‘,(O) sin (24) ,  and vB = 0, r r 

where, as evident from figure 5 ,  the amplitude of oscillation in the radial velocity is 
larger than that in the azimuthal velocity. In the near-axis region (0 < 60°), the radial 
velocity is very small in comparison with the meridional and azimuthal velocities, 
which are nearly equal. This corresponds to a four-cell motion on any spherical surface 
given by I = constant. Note that Re, increases with increasing m. To check if a set of 
Re, is countably infinite, we now consider the limiting case, as m+ 03, analytically. 

6.2. Asymptotic analysis for large m 
The wavenumber m corresponding to a disturbance which starts growing first, as Re 
increases or Pr changes, can be arbitrarily large (for example, see figure 8). Therefore, 
the case of m B 1 has not only mathematical interest but also physical importance. We 
expect that for large m, Re, is also large. At large Re, a boundary layer develops near 
the surface. For the basic flow, Wang (1971) studied this limiting case by introducing 
the inner variables 7 = x(iRe)i and Y = y(2Re)-i, using these variables in (1 l), and 
finally allowing Re to tend to infinity. The boundary-layer solution was found to be 
Y = tanh(7); this solution corresponds to a near-surface fan jet. The outer solution is 
Y = 1 --x; this corresponds to a potential upward flow. 

We now consider the stability of this boundary-layer solution. Using the above- 
mentioned inner variables in (18) together with 

r, = yl($e)i, G = I‘, Re/(2m), and M = m(;Re)-i, (21) 

2.4; = (M2-4Y’)u1-2Yu’l-2Yr,, (22 a) 
G = M2G-2Y(G’- YJ+u,+F,, (22 b) 
Y; = u, +M2G,  and 4’ = MZ(G’-  K ) .  (22G 4 

we reduce the system (18) in the limit Re+ co to 
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FIGURE 5. Dependence of radial (uJ, meridional (yl) and azimuthal (r,) velocities on the polar 
angle for neutral disturbances at Pr = 0, m = 2 and Re = 18.92. 

Here we have taken into account that 9, = 0 and the prime now denotes differentiation 
with respect to 7. It follows from (19) that 

=0 ,  u; =0,  and G = 0 at 7 = O .  (23) 
Moreover, q, u1 and G must decay as 7 -+ oc). Differentiating (22d) and substituting for 
G and Y; from (22b, c), one finds that 4 must be a solution of the decoupled problem: 

q + 2 Y & '  = M 2 4 ,  F; (O)  = 0, and &(a) = 0. (24 U-C) 

Here (24b) follows from ( 2 2 4 ,  and (24c) from (22b) and (23). We find that problem 

Then ( 2 2 4  yields = G ,  and (22a, c) may be rewritten as 
(24) has only the trivial solution 4 = 0. 

U: = (M2-4Y)ul-2Yu;-2YG, G = M,G+u, ,  (25a, b) 
ui(0) = G(0) = 0, and ul(co) = G(w) = 0. 

This problem has the following analytical solution : 

M = 1 ,  u1 = coshP3 7, G = - (2 cosh q)-l, and & = sinh q/(2 cosh2 7). (26) 
This can be easily verified by substituting (26) in (25). Thus, a countable infinite set of 
critical Re following the asymptotic law, 

Re, = 2m2, (27) 
indeed exists! Our numerical calculations agree with (27) and provide the next terms 
of the expansion: Re, = 2m2+61.6- 1760m-2 - a good approximation for m > 9. 
Matching of the asymptotic analytical results with the numerical calculations provides 
a full description of the linear instability of the Squire-Wang flow. The existence of an 
infinite set of Re, seems to be typical for the divergent instability, as it was for the 
Rayleigh-BCnard and the Taylor instabilities. 

It can be easily inferred from (26) that the radial component of the disturbance 
velocity is proportional to u1 and dominates the azimuthal and meridional components. 
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The last two are proportional to G and & respectively; both are multiplied by (iRe)-i 
according to (21). This implies that the instability leads to a splitting of the basic flow 
of a near-surface fan jet, which is azimuthally uniform, into m radial jets. This effect 
is quite similar to the instability of the planar source flow (Goldshtik et al. 1991). 

7. Instability of divergent flow in cones 
7.1. One-cell motion with free boundary 

Mathematically, the problem of the stability of the fluid motion in conical domains is 
a slight generalization of the problem considered in the previous section. The only 
difference is that we consider the cone boundary (8 = e,), see figure 1 (b), to be a stress- 
free surface instead of a planar surface. Figure 6 shows the calculated results for the 
critical Re as a function of 8, and m. It is to be noted that Re, tends to infinity both 
as 8,+0 and 8 , + x .  For each m, there is a specific angle 8,, corresponding to the 
minimum value of Re,. When 8, -+ x, the basic flow approaches the case of a Landau 
jet propagating along the half-axis 8, = x, and Re, follows the asymptotic law 

Re, = m(m- l)(l-xc)/[2(l +x,)]. 

Therefore, the Landau jet, which corresponds to x, = - 1, is stable with respect to 
these disturbance modes. The flow divergence in the core of the Landau jet corresponds 
asymptotically to the parabolic law: along a streamline the distance from the origin is 
proportional to the square of the distance from the axis. Hence, it is clear that the 
parabolic law of streamline divergence is not sufficient for the divergent instability to 
occur; for this instability one needs the linear law; i.e. streamlines must diverge 
asymptotically in the same manner as the rays from the origin. 

When the cone angle approaches zero, the convergence decreases, and an additional 
stabilizing factor appears: a small gap between the axis and the cone. The 
physically relevant lengthscale becomes r sin 8, and asymptotically we obtain 
Re, = A/[(l- cos 8,) sin O,], where the factor A depends on m only. 

One prominent feature of this solution, as illustrated in figure 6 ,  is that the neutral 
curves (for different m as 8, it 0) intersect. At large Re, a boundary layer develops near 
the surface, and the maximum wavenumber rn for the growing modes is proportional 
to Re-: (see (27)). This implies that the azimuthal wavelength is of the same order as 
that of the boundary-layer thickness. Such disturbances, localized in the boundary 
layer, are not influenced by the damping action of the axial conditions 

y1 = r, = u1 = 0 

that stabilize large-scale modes of small m. This causes m, to increase as the cone angle 
decreases. Such intersections are absent when OC+ x, because the axis is very distant 
from the near-surface boundary layer and hence has little influence on the disturbances 
of interest. However, the viscous dissipation due to shear is larger for small-scale 
modes; this leads to a monotonic increase of Re, with m. 

7.2. Two-cell motion above rigid cones 
Stress-free boundary conditions seem to be crucial for the divergent instability of near- 
surface flows. To study this, we chose a one-parameter family of boundary conditions 
which are stress-free and no-slip, respectively for the parameter value of 0 and 1. As 
the parameter approaches 1, Re, tends to infinity for both the free-surface problems 
(i) and (ii). The next section shows that a special purely hydrodynamic problem 
originates from the broader problem of Marangoni convection in the limiting case of 

20 FLM 256 
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FIGURE 6. Dependence of the critical Reynolds number on cone angle 8, and azimuthal 
wavenumber m for flows in the conical meniscus. 

infinite Pr. There ‘ half-slip ’ boundary conditions (with zero azimuthal and non-zero 
radial velocities) lead to a significantly higher Re, than that in the ‘slip’ case. It appears 
that no-slip at rigid walls effectively suppresses disturbances and prevents the 
instability of near-wall divergent flows. One may expect that if the divergent motion is 
away from the wall, the influence of no-slip boundary conditions will decrease and the 
divergent instability would reappear. To check this conjecture, we consider again the 
motion above a cone, this time subjected to the no-slip condition and driven by body 
forces, namely buoyancy. An appropriate example is the flow near a cone with a rigid 
wall. This flow models convection near a glacier. Goldshtik & Shtern (1990b) studied 
the basic flow induced by a thermal quadrupole at the cone apex. At Pr = 0, the heat 
equation decouples and the problem reduces to one of a purely hydrodynamic nature, 
and buoyancy serves only as an external driving force. Then the equations 

( 1 - x 2 ) y 5 + 2 x y - ~  = -Re[(l +x,)/(l-x,)](l - ~ ) ~ f ( x ) / f ( x , ) ,  

govern the basic flow. If the cone is sharp enough (i.e. its boundary x = x ,  satisfies the 
condition x,  c -+), then the flow has two cells (i.e. x ,  < x, < 1). Near the axis and wall, 
fluid flows to the cone apex and then forms a conical outflow (figure lc);  Re 
characterizes the radial velocity at the separating cone. 

The stability problem consists of system (18), conditions (20) (with 9, = 0) and the 
no-slip conditions y1 = TI = u1 = 0 at x = x,. 

Figure 7 shows the numerical results from the solution of the above problem. It is 
to be noted that Re, is of the same order as it was in the previous problems, and reaches 
its minimum value Re, = 19.3 for the flow pattern where the outflow is near the middle 
cone between the conical wall x, = - 0.6 and the axis (see the sketch of the flow pattern 
for point 1 on the neutral curve). The angle (x,,, = 0.36), where the radial velocity has 
its maximum value, is close to the angle ( x ,  = 0.33) of the separation cone. This 
instability corresponds to the disturbance mode of m = 2. 

f ( x )  = x( 1 + x ) ~  - x,( 1 + x , ) ~ ,  x ,  = - 1 - 2xc, y(x,)  = 0 and y,(x,) = -Re 
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FIGURE 7. Neutral curves for flows driven by buoyancy above rigid cones. Sketches show flow 
patterns for points marked 1, 2 and 3 and for the one-cell regime for x, > -+. 

As the outflow jet approaches the wall, the stabilizing effect of the no-slip conditions 
is enhanced, which causes Re, to increase along the right branch of the neutral curve. 
On the other hand, as the outflow jet approaches the axis, the stabilizing effect of the 
regularity conditions is enhanced, which causes Re, to increase along the left branch 
of the neutral curve. These two cases are illustrated respectively in the flow sketches for 
points 2 and 3 in figure 7. The divergent instability does not occur for x, > -+, when 
the outflow is attached to the wall. We have not found this type of instability for the 
one-cell upward flow either. 

The divergent instability does not occur with m = 1 in all these cases. As m increases, 
the minimum Re, also increases due to viscous dissipation. The neutral curves for 
different m intersect (see the arrangement of curves m = 2 and m = 3 in figure 7); the 
reason is the same as that in the previous case (97.1): localization of modes with high 
m-values in the outflow that makes them less sensitive, in comparison with modes of 
small my to the stabilizing influence of the boundary conditions. 

8. Instability of Marangoni convection 
8.1. Numerical results 

Now we return to study the stability of flows with a planar free surface, namely 
Marangoni convection - where the hydrodynamic and thermal processes interact 
(figure 1 d) .  The results from numerical solutions are presented in figure 8. Two families 
of neutral curves, one for Pr c 0.05 and the other for Pr > 1, exist on the parametric 
plane (Re, Pr).  At Pr = 0, the Marangoni problem reduces to the Squire-Wang case 
considered in $6 .  Consequently, the neutral curves, corresponding to m = 2,3  and 4 at 
small Pr, asymptotically reach the Re, values obtained in the Squire-Wang case 

20-2 
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FIGURE 8. Relations between the Prandtl and Reynolds numbers for neutral disturbances for 
Marangoni convection. Figures near the curves denote the azimuthal wavenumber values. The 
dotted-dashed lines show asymptotes. 

(figure 8). Pr,, as a function of Re at a fixed m, reaches a maximum value and then 
decays as Re += 00. Therefore, contrary to the case of Pr = 0, for Pr > 0 each mode 
with m = 2,3, ... has a bounded instability range of Re. 

Each neutral curve intersects all others; figure 8 illustrates this phenomenon for 
m = 2, 3 and 4. For large rn, the intersection points can be calculated from the 
asymptotic analysis. We note again that the intersections provide favourable conditions 
for complex unsteady regimes to occur. At Re and Pr values corresponding to the 
intersection, a three-dimensional centre manifold exists, related to the amplitudes of 
the two neutral modes and to the magnitude of the azimuthal shift between the modes. 
This, along with existence of free parameters, Re- Re, and Pr- Pr, (where the 
subscript denotes the value of the corresponding parameter at the point where neutral 
curves intersect), makes it likely that regimes showing complex unsteady dynamics will 
be observed (Guckenheimer & Holmes 1983). At low Pr, the intersections take place 
at ‘back’ branches. The term ‘back’ branches refers to the portions of the neutral 
curves that lie to the right of their maxima in Pr. The complex regimes can be observed 
in experiment for the low-Pr range by decreasing Pr while Re remains fixed, and for 
the high Pr range by increasing Re while Pr remains fixed. 

In our first attempt, we failed to find the family of neutral curves for large Pr by 
numerical methods. Presumably, this was because of the crucial role of very thin near- 
surface thermal boundary layers which can easily be missed during numerical 
calculations. Nevertheless, the asymptotic analysis described below succeeded in 
finding the instability expected in the high-Pr range, and observed experimentally by 
Pshenichnikov & Yatsenko. However, first, we will study the asymptotic features of the 
neutral curves at small Pr values to find the limiting relations Pr,(Re) for the back 
branches. 
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FIGURE 9. Distributions of the disturbance velocity (u~, u, and TI4) and temperature (0) in the 
boundary layer near the surface in the limit Re + co for m = 2. 

8.2. Pr + 0 limit at fixed m 
To achieve this we employ the approach described in $6.2; however, here we consider 
m to be fixed and bounded. For the boundary layer, we again have system (22) but with 
M = 0, as dictated by (21); hence, the eigenvalue must be found in terms of a 
parameter different from M .  Scaling analysis shows that P = Pr(iRe)i can serve as such 
a parameter. The outer solution for the basic problem, then, is 

Y b  = ( 2 ~ e ) + ( 1  - X I ,  U b  = - ( 2 ~ e ) $ ,  8, = 9,(1+ x)-p, \ 
9 0 -  - (21-p - 1 + P)-l, and Mr = 2Re(2l-' - 1 + P). ) (28) 

ule = 0,  and y le  = -Tie = [(l - x ) / ( l  + x ) ] ~ ' ~ .  (29) 

The outer (external) solution for the disturbance velocity is 

The inner solution for the disturbance velocity is 

9 = x(iRe)f, ' (30) 
y l r  = tanhr+7cosh-27, 
ulr = (2Re)i (1 - 7 tanh 7) cosh-2 7, and rl, = +( 1 -4  tanh 7). ) 

These profiles are displayed in figure 9 ;  the radial component of the disturbance 
velocity changes sign at 7 = 1.2, and the azimuthal component does so at 7 = 0.25. 
Thus, recirculation cells originate in a meridional section, and are placed inside the 
boundary layer. Outside the boundary layer, however, the amplitudes of the 
disturbances in radial velocity and temperature decay, and the amplitudes of the 
meridional and azimuthal disturbances become asymptotically equal - as predicted by 
relation (29). 

Using the aforesaid results along with the condition (19d), and introducing 
0 = 8, /Pr ,  we obtain the boundary condition 

and the equation for O(x) which follows from (18c) 

O(0) = - 2[3mP(2lPP - 1 + P)]-l, (31)  

1 - x  mI2 
( 1 - x 2 ) 0 " =  [ 2 x - P ( l - x ) ] O ' + O  P + -  P(21-p - 1 + P)-' ( 1  + x)-l-P [ 1::"1+(TT;) 
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Equation (32), along with the conditions (31) and the condition that O’(0) = 0, 
defines an initial-value problem. Using the regularity condition, O(x) - (1 - x ) ~ ” ,  in 
the vicinity of x = 1, we obtain P = 0.67 for m = 2. Therefore, the asymptotic law for 
the neutral curve with m = 2 (shown in figure 8) is 

The numerical results obtained are in agreement with this law. 
Pr,  = 0.67(2Re)-;. (33) 

9. Instability at Large Pr 
9.1. Transformation of boundary conditions 

Figure 8 shows that no linear instability occurs for Pr > 0.05. Our study of y,(x,) as 
a function of Re and Pr (see 95) fails to find any zeros for Pr > 0.05. However, the case 
as Pr-+ co, requires special treatment. This case is physically important since the 
Schmidt numbers (Sc), in practice, are usually very large; for example, in the 
Pshenichnikov & Yatsenko experiment, Sc x lo3. (We use Pr instead of Sc throughout 
this paper because the thermal and concentration versions of the Marangoni problem 
are mathematically identical for our purpose.) 

In this section we consider the transition as Pr+ 00 at fixed Re and m. It was 
previously shown in 93 that the axisymmetric solution for 9 has a Gaussian 
distribution for Pr b 1 and tends to a delta-function as Pr + co. The physical reason 
is clear: at small thermal (concentration) diffusivity, the transport of heat (surfactant) 
is mainly convective. Because of the existence of an upward flow when Re > 0, all heat 
from the source is concentrated in a thin near-surface layer. Clearly, this is also 
true for a non-axisymmetric case. Integrating (8c) with respect to x in the interval 
0 < x d 1, and using (8 e) and conditions (9) and (1 l), we obtain 

dx = 0. (34) 

As Pr -+ 00, the first term in the numerator becomes negligible. Using the amplitude 
expansions r = ATl + A2T2 + . . . , 9 = 9, +A*, + A29 ,  + . . . and taking into account 
that 9, tends to a delta-function due to (15), we obtain (by collecting terms of similar 
orders) r+ = 0 at x = 0. From conditions (9 c, d )  it follows that ux+ + r, = 0. Thus, in 
the limit Pr+ 00, (9) must be replaced by 

for the disturbances, and y = r = 0, u = Re at x = 0 for the basic flow. In this limit, 
the hydrodynamic problem decouples from the thermal problem for a general non- 
axisymmetric nonlinear case. After solving the hydrodynamic problem, condition (9 c) 
can be used to determine the temperature distribution at the surface for a large but 
finite Pr. 

9.2. Critical Reynolds numbers at Pr = co 
To solve the linear problem, we use system (18) here without (18c). Boundary 
conditions on the axis coincide with (20), but, instead of (19), we now apply the 
conditions at the surface using (17) and (35): 

y = O ,  u x , + r X = O ,  r,=O at x = O  (35) 

y , = r , = O ;  rnuL-rl,=O at x=O. (36) 
Applying the algorithm described in 0 5.1 we get 

m 2 3 4 5  6 7 8  
Re, 115 120 152 193 242 299 364 
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FIGURE 10. Velocity distribution for neutral disturbances at Pr = co, m = 2 and Re = 115. 

These values provide the limiting Re, for the neutral curves Re,(Pr) as Pr+ 00. 

Figure 10 shows eigenfunctions for the first neutral mode (Re = 1 1  5,  m = 2). At the 
surface, the disturbance motion is purely radial. The radial velocity predominates in 
the near-surface region but decreases rapidly as x increases, and is almost absent for 
x > 0.5. An infinite countable set of eigenvalues exists in this limiting case as well, and 
an asymptotic law for large m can be found by utilizing the same approach as in $6.2. 

9.3. Limit of large m at Pr = co 
We use (21) and (22) from the Squire-Wang case unchanged, but replace the boundary 
conditions (23) with 

No analytical solution for the problem was found; however, it can be easily solved 
numerically. Instead of fulfilling the decay conditions at infinity, we satisfy a set of 
modified conditions at a finite distance q = qe. The nature of these conditions needs to 
be explained in more detail. The coefficients of (22a) become constants for q P 1; 
hence the decaying solution can be written as u, = Cexp (yl q), y1 = - 1 - (1 +Ma):, 
which corresponds to the relation 

q = O ;  u i=O;  G = O  at q=O.  (37) 

u;-y lu,  = 0. (38) 
The same condition follows for 4 from (24a) for q 9 1 : 

F,’-y,F, = 0. (39) 
Equations (22a) and (24a) decouple from (22b-d) and admit the trivial solution 

u1 = 8 = 0. Then from (22d), we have G‘- = 0, and (22b) becomes G - M 2 G  = 0. 
It has a decaying solution given by G = Cexp(-Mq), which corresponds to the 
relation 

G’+MG = 0. (40) 
Since Y = tanh(q) tends to 1 exponentially as T-+ co, the value of qe does not need 

to be very large to achieve sufficient accuracy. We have used qe = 6 and have found 
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FIGURE 11. Distribution of the disturbance velocity in the boundary layer near the surface in the 
limit of large Re and m. 

(with the help of a few tests) that increasing ye does not result in an improved accuracy 
up to four decimal places. Thus, we add (37) to the normalization u,(O) = 1 and the 
tentative values of G(0) and 4 ( 0 ) ;  then we integrate (22) as an initial-value problem 
from y = 0 to y = ye. We find G'(0) and F,(O) (by the shooting method) to satisfy (38) 
and (39), and finally, study the left-hand side of (40) as a function of M .  The result is 
that this function has a unique zero at M = 0.7624. This corresponds to the asymptotic 
relation 

Re, = 3.44~1' for m 9 1. (41) 

Figure 11 shows distributions of the velocity components in this limit. The coefficient 
in (41) is larger than the coefficient in (27) and that in Re, = n(m2 - 4), which is the law 
for the planar source. The reason is that the 'no-slip' condition for the azimuthal 
velocity, G(0) = 0, suppresses disturbances stronger than the ' stress-free ' condition 
G(0) = 0, which is used for the case Pr = 0 and for the planar source flow. 

For larger Pr, the temperature in the flow differs from that in the ambient only in 
a thin layer near the surface. Expression (15) gives the temperature distribution for the 
basic solution. The disturbance relevant to temperature 9, can be expressed in the 
following way : 

9, = (2nPe)-t u,(O) Re-'( 1 - 7') exp (-Byz); y = Peix. 

The function al(y) changes its sign at y = 1 and satisfies the condition j7 9, dy = 0, 
which follows from (34) and (35). 

9.4. Neutral curves at large Pr 
Figure 8 shows, for large Pr, the numerical results for m = 2, 3 and 4. As Pr --f co, Re, 
values approach their limits, as reported in $9.2 and shown in figure 8 by dot-dashed 
lines. When Re increases along the neutral curves, Pr, monotonically decreases and 
tends to reach a non-zero limit as Re+ co. Consider the limiting case of large Re. In 
the boundary-layer approximation, the hydrodynamic part of the problem becomes 
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decoupled from the thermal part, and the distributions of velocity disturbances are 
exactly the same as those in $8.2;  see (29) and (30). Unlike the case of small Pr, here 
there is a thermal boundary layer as well. For this layer, we again apply 7 = x($e)i. 
For the basic solution for temperature, it follows from (13) that 

9, = B,(cosh v)-'~'. (42) 
We now consider temperature disturbances. In the boundary-layer limit, the first and 

the last terms on the right-hand side of (18 c) become negligible in comparison with the 
other terms. Dropping these small terms, one can integrate (18c) once to obtain 

9; + Pr(2/Re)-i ( y b  9, + 9, yl) = 0, 
where the prime denotes differentiation with respect to 7. UsinB (42) and 
y ,  = (2Re)i tanh 7, we obtain, for the rescaled function O(7) = (iRe)z (Pr9,)-' a,, 
the equation 

0' + 2Pr0 tanh 7 = - yl(cosh T,Z)-'~~. 

The solution of the homogeneous equation is 0 = C(cosh7)-2Pr, where C is the 
integration constant. Looking for a solution in the form 0 = B(7) (cosh 7)-"", we then 
have B' = -yl. Applying (30) for yl, we obtain the solution 

0 = (C- 7 tanh 7) (cosh 7)-2Pr. 

Higher-order terms of the boundary-layer expansion provide a value for the 
constant C, e.g. C = O(0) = 0.02 for m = 2. In terms of the boundary-layer variables, 
(19d) becomes f'i(0) = 4mO(O), then, applying (30) to Tl(~), we obtain the limiting Pr, 
value as Re+ co. The result is Pr, = 8.6, 4.6 and 3.6 for m = 2, 3 and 4. As m +  00, 

the asymptotic Pr, values accumulate near Pr = 1. For Pr = 1, in the boundary-layer 
approximation, the Reynolds analogy is relevant for temperature and velocity 
distributions, which yields 0 = ;uli with uli given by (30). 

Thus, when m increases, Re, at Pr = 00 increases and Pr,  at Re = cg decreases. 
Therefore, all neutral curves intersect one another. Now we proceed to study the nature 
of bifurcation at the neutral curves and other relevant features of nonlinear instability. 

10. Nonlinear analysis 
10.1. Approach 

The objectives behind a nonlinear analysis are to examine the nature of bifurcation 
(whether it is subcritical or supercritical), to investigate the simplest interaction 
between the modes, and to inspect the features of the secondary regimes. To 
accomplish the above, we use the Fourier decomposition for the angle-dependent 
secondary steady solutions - approximated by retaining only a few modes. One may 
see that (8)-(10) permit solutions where functions u, 9, F, y are symmetric and r is 
antisymmetric with respect to 9. Therefore, instead of (17) we use 

r ( x ,  $1 = Ef'j(4 sin (jm9), j = (1, a), (43) 
u(x, 9) = C U j ( X )  COS ( j m h  = (0, a), (44) 

and representations similar to (44) for y ,  9 and F. The absence of the term with 
j = 0 in (43) corresponds to the fact that a mean circulation is not generated as a result 
of instability. In our calculations all terms with j > 2 are neglected. This cut-off is 
sufficient to portray the nature of the bifurcation and allows for estimation of the 
accuracy of the approximation. 
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Canonical approaches to the study of the bifurcation nature are weakly nonlinear 
and based on either the Lyapunov-Schmidt method (Yudovich 1965) or a power 
expansion with respect to disturbance amplitude A (Joseph 1976). They require 
calculations of the second harmonic and nonlinear contribution to the zeroth harmonic 
in O(A'). Our approach provides these quantities and therefore yields the same 
coefficient Re, as in the decomposition 

Re = Re, + Re, A2+ ... 
resulting from the canonical approaches. When the basic flow is stable for Re < Re,, 
a subcritical or supercritical bifurcation occurs if Re, < 0 or Re, > 0 respectively. Our 
approach allows us to obtain good approximations of the secondary solutions in a 
wider range of parameters than do the canonical approaches. To estimate the intensity 
of a disturbance and the accuracy of the approach, we use ratios of kinetic energies of 
the harmonics. The total kinetic energy of the flow E is the sum of the harmonic 
energies : E = E, + El + E,. We use I = [(El + E,)/E,P as a measure of the disturbance 
intensity and I ,  = (E,/E,>:: as a measure of the cut-off error. If I, < 1 ,  then the 
approximation is satisfactory; however, if I ,  approaches 1, then higher harmonics must 
be taken into account. 

To obtain the ODE system, we use the cut-off of (43)-(44) up t o j  = 2, substitute in 
(8)-(lo), and make projections on the harmonics withj = 0, 1, and 2. This rather bulky 
system of the 22nd-order is given in the Appendix. It consists of eight equations for 
each harmonic o f j  = 1 and 2, and six equations for the zeroth harmonic. The smaller 
number for the zeroth harmonic is due to the absence of an equation for the 
circulation. The boundary conditions for the zeroth harmonic are the same as those for 
the basic solution, the conditions for the first harmonic coincide with (19)-(20), and the 
boundary conditions for the second harmonic are similar to (19)-(20). 

We use a numerical algorithm similar to that used for the linear case. The results of 
the linear problem serve as initial values for the tentative data to start the shooting 
procedure, and then iterations follow until convergence. The convergence requires 
small steps in free-parameter variations, which seems to be a limitation of the method. 
On the other hand, the method provides detailed information about the dependence of 
the solutions on free parameters; such information sometimes helps to find the non- 
trivial features of the problem. 

10.2. Bifurcation character 
Our calculations show that a typical divergent instability is supercritical for the flows 
considered. Figure 12 shows the results for Pr = 0, i.e. for the Squire-Wang flow. Solid 
curves correspond to secondary steady axisymmetric solutions which originate at the 
bifurcation points, Re = Re,, and exist for Re > Re,. According to the general theory 
(Joseph 1976), such a solution is stable. Indeed, for Re < Re,, the basic solution is 
stable and therefore attracts nearby trajectories. This implies that any disturbance with 
a finite (but sufficiently small) amplitude decays during some unsteady transition 
process. When Re is close to Re,, an eigenplane in the phase space appears 
(corresponding to the neutral mode at Re = Re, with arbitrary phase shift); along that 
eigenplane, attraction toward the basic solution becomes weaker. For Re > Re,, the 
basic solution repels trajectories; as a result, a circle of new steady solutions (a shift 
with respect to the azimuthal angle serves as the parameter) appears replacing the 
attractor. Figure 12 shows a typical case of evolution schematically by arrows. If the 
disturbance energy is smaller than that of the secondary solution, such a disturbance 
grows, and the transition solution tends to the secondary solution. If the disturbance 
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FIGURE 12. Intensity of disturbances Z (-) and ratio f, of the second/first harmonic amplitude 
(... ... ) for the secondary steady solutions at Pr = 0. 

energy is larger, the disturbance decays ; nevertheless again the transition solution 
tends to the secondary solution. The solid curves in figure 12 are prone to intersect one 
another when disturbance energy is sufficiently large; we do not show these 
intersections because our calculations stop when I ,  becomes rather large (shown by the 
dashed lines in figure 12). 

10.3. Subharmonic resonance 
The supercritical character of the bifurcation is preserved for non-zero Pr. Figure 13 
shows the neutral curves 2 and 4 (i.e. for rn = 2 and m = 4) as the solid lines. The 
dashed lines 2’ and 2“ correspond to the secondary solutions of a small fixed amplitude 
for m = 2. Curve 2’ is below curve 2 in the (Re, Pr)-plane; this indicates that the 
instability is supercritical. However curve 2 is above curve 2; this indicates that the 
instability is subcritical. An interesting feature is that both 2’ and 2’’ cease to follow 
curve 2 near the intersection points of 2 and 4, i.e. at Re z 100. As 2‘ and 2 turn away 
from curve 2, although I is fixed, I, begins to increase rapidly. This indicates that the 
second harmonic ( j  = 2) begins to dominate the first harmonic ( j  = 1). Since the total 
disturbance energy is kept small, curves 2’ and 2” approach the neutral curve 4. The 
secondary solutions, bifurcating along curve 4, consist of harmonics with m = 0,4, 
8, . . . . That 2’ and 2” are present near 4 indicates that a subharmonic instability occurs. 
This instability occurs for small I values and leads to the generation of tertiary 
solutions via the secondary bifurcation. The amplitude threshold for the subharmonic 
instability becomes zero at the intersection of curves 2 and 4. At that point, no steady 
secondary solution occurs corresponding to m = 2. Near this point complex unsteady 
behaviour is possible, because amplitudes of harmonics with m = 2 and m = 4, 
together with a phase shift between the harmonics, provide a three-dimensional 
dynamical system in the centre manifold. It is difficult to study this unsteady behaviour 
because the self-similarity is not guaranteed for time-dependent solutions. For this 
reason, we have restricted ourselves only to steady solutions. 

Similar behaviour of neutral curves and curves for a small fixed amplitude is 
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FIGURE 13. Bifurcation and subharmonic resonance at small Pr are illustrated by the arrangement of 
dashed curves 2’ and 2 corresponding to the secondary solutions for fixed amplitude and m = 2, and 
neutral curves 2 and 4. 
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FIGURE 14. The same as figure 13 but for large Pr. The dotted-dashed lines show the limiting 

values of Re for neutral curves with m = 1, 2 and 3. 

observed for high Pr (see figure 14). Now, however, the front parts of the neutral curves 
intersect. This suggests that resonant interactions are possible in experiments where Pr 
is fixed. Keeping this in mind, we now discuss the behaviour of the secondary solutions 
and nonlinear subharmonic resonance, observed at a fixed Pr. 
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FIGURE 15. Intensity of disturbances for the secondary steady solutions at Pr = 1000. The intersection 
of curves 2 and 4 is related to the secondary bifurcation due to the subharmonic resonance. 

10.4. Secondary solutions at Pr = 1000 
As mentioned earlier, the Pr value (actually, the Schmidt number) in the Pshenichnikov 
& Yatsenko experiment was about lo3. Figure 15 shows Z(Re) for m = 2, 3 and 4 at 
Pr = lo3. Note that the instability is again supercritical. As Re increases, the intensity I 
for the secondary flow corresponding to m = 2 (which bifurcates at Re = 128.5) grows 
rather slowly at first, and then reaches its maximum value Z = 0.08 at Re z 155. At the 
intersection point of curves 2 and 4, the amplitude of the first harmonic in the solution 
for m = 2 becomes zero, and the disturbance energy ( I  = 0.073) is supplied only by the 
second harmonic. This indicates that a nonlinear subharmonic resonance takes place 
at the intersection point. Curve 4 corresponds to the secondary solution for m = 4 that 
bifurcates supercritically at Re = 161.4, and includes harmonic exp(4i$) and other 
higher harmonics. However, when the amplitude of the fundamental reaches the 
critical value, subharmonic bifurcation takes place, and the solution, related to curve 
2 in figure 15, branches from the solution for m = 4. 

An apparent intersection of curves 2 and 3 appears in figure 15 due to projection. 
This intersection does not indicate additional bifurcation; on the other hand it 
indicates a possible instability of solution 2 with respect to disturbances corresponding 
to m = 3. Solution 3 at Re = 130.4 appears to be unstable with respect to mode 
m = 2 because the basic solution is unstable, and, at the bifurcation points, all the 
stability characteristics of both the solutions coincide. However, the results shown in 
figure 15 suggest that, at large amplitudes (i.e. above the intersection point of curves 
2 and 3), solution 3 may become stable with respect to the m = 2 mode. We may 
assume that, as Re increases, solution 3 becomes stable while solution 2 loses its 
stability. This effect would produce a hysteretic transition between regimes of 4 and 6 
cells. The experiment by Pshenichnikov & Yatsenko does show such a hysteresis, 
although the corresponding Re values are 2-3 times more in the experiment (see 94) 
than in this theory, possibly due to stabilizing effect of the bottom and sidewalls. 
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11. Discussion 
Our analysis reveals that the divergent instability is intimately related to azimuthal 

symmetry breaking. The divergent instability, which was first found for the planar 
vortex-source flow (Goldshtik et al. 1991), also occurs in three-dimensional fan jets. 
The study of three-dimensional flows provides a new understanding of the nature of 
this instability. 

The flow divergence (i.e. separation of streamlines with distance from the origin) 
must be large enough for the divergent instability to occur. It takes place in flows where 
streamlines of the outflow diverge asymptotically like rays from the origin, but not in 
the Landau jet and other jet-like flows where the divergence is weaker and the 
streamlines are asymptotically parabolic. 

Two effects related to the influence of boundary conditions are important in the 
generation of the divergent instability. The first, rather obvious, effect is that of flow 
stabilization as the surface conditions are changed from slip to no-slip. For the 
Squire-Wang problem with stress- free conditions for disturbances, we have found 
Re, = 18.9. However, Re, becomes 115 for the Marangoni problem at Pr = co. This 
increase of Re, is due solely to the change of the surface conditions from slip to ‘half- 
slip’ ones: i.e. the azimuthal velocity becomes zero but the radial velocity does not. 
When the conditions are no-slip, Re, becomes infinite. The stabilizing effect of the 
regularity conditions at the symmetry axis (induced by the smoothing action of 
viscosity) is similar: when the outflow approaches the axis, Re, increases to infinity. 
We have obtained this result for flows in conical regions for cases driven by a boundary 
force and a body force alike. The second, more complicated, effect of boundary 
conditions is to increase m, as the outflow approaches either the no-slip boundary or 
the axis (see figures 6 and 7). This is, however, quite reasonable, and relates to the 
localization of short-wave disturbances inside the thin boundary layer (with increasing 
Re,) of the outflow - which makes these disturbances less sensitive to outer conditions. 

Another intriguing effect is the complete stabilization of the Marangoni convection 
in the range 0.05 < Pr c: 1. We have studied the energy balance equation and found 
that the Marangoni stresses provide a sink term in this equation. However, a 
convincing physical mechanism for the stabilization needs to be found. 

The three-dimensional flows investigated here are more stable, as evidenced by 
higher Re, values, than the planar flow from the point source examined by Goldshtik 
et al. (1991). Unlike the planar problem, the divergence of streamlines occurs only in 
a part of the three-dimensional flow region; this provides the above stabilizing effect. 
Other notable differences are the absence of instability with respect to the disturbance 
mode m = 1 and the supercritical character of bifurcation in the three-dimensional 
flows. The exact reason for the difference with respect to the mode m = 1 is not yet 
known; our conjecture is that it is related to momentum conservation. If a disturbance 
of the planar source possesses a non-zero momentum, then it decays asymptotically as 
r-f, i.e. more slowly than the basic velocity which decays as r-’. The m = 1 mode has 
non-zero momentum and this results in its relative amplification. Such a reason is 
absent in the three-dimensional case, where the dependence of the basic flow on r 
corresponds to the main term of the asymptotic representation. The common feature 
of all the problems considered here is that no instability occurs with respect to the 
m = 1 mode; thus it prompts us to suggest that the one-jet regime observed by 
Pshenichnikov & Yatsenko at small Q (figure 3) is not a result of the divergent 
instability, but is induced by some external source of momentum -which may arise 
from an asymmetric source. 
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One more interesting feature of the problem is the intersection of the neutral curves 
in all the problems considered. The presence of such degeneration in the disturbance 
spectrum makes possible complex behaviour near the corresponding Re values. In 
particular, the intersection of the curves corresponding to rn and 2rn corresponds to the 
subharmonic instability of the secondary solutions. Our results are in qualitative 
agreement with the experimental observations of Pshenichnikov & Yatsenko regarding 
both the critical Reynolds number and the patterns of the secondary flows. To obtain 
better agreement with the experiment, high-amplitude disturbances and their unsteady 
evolution need to be studied. 

12. Summary of results 

where a radial divergence of streamlines occurs near a planar or conical surface. 

azimuthal wavenumber rn = 2 ;  for m $ 1, the asymptotic law is Re,  = 2m2. 

angle approaches 0 and 7c. As the angle decreases, rn, increases. 

(i) Bifurcations lead to new steady solutions with azimuthal cells in four problems 

(ii) For the SquireWang flow, the minimum Re, = 19.2 corresponds to the 

(iii) For the recirculation flow in a conical meniscus, Re, tends to infinity as the cone 

(iv) A similar instability occurs in two-cell free convection above a rigid cone. 
(v) For Marangoni convection in a half-space, two infinite sets of the neutral curves 

exist which are separated by the interval 0.05 < Pr < 1. The numerical results for finite 
Re and Pr, together with the asymptotic solutions for the limiting cases, provide a full 
analysis of the linear stability problem. 

(vi) Nonlinear analysis shows that the primary bifurcations are supercritical and 
lead to stable secondary regimes. However, secondary subcritical bifurcations and 
intersections of the neutral curves suggest the presence of regimes with complex 
dynamics. These results are in accordance with the Pshenichnikov & Yatsenko 
experiment where both the steady and unsteady regimes are observed. 

The authors cordially thank Mikhail Goldshtik and Arindam Ghosh for fruitful 
discussions and help. This work was supported by Air Force Office of Scientific 
Research grant F49620-92-5-0200. 

Appendix 

for the ‘zeroth’ harmonic 
The system of ordinary differential equations for the nonlinear problem: 

(1 -x2) u;; = xy u; + 2(4 - u,) -u: -gyl u; + y 2  u; + u; + u;) -x,(T1 u1 + 2 r 2  24,); 

( 1  - x2) 4’ = X,(T1 y1 + 2 r ,  y,) - p1 r; + r, r;) ; 
y i  = u,; xy = x 2 - y o ;  x, = m/[2(1 -x2)]; x, = 2 x ;  

(1 - x ” 8 ;  
= X, 8; - P ~ [ Y ,  8; + u0 8, +gy l  8; + y z  8; + u1 8, + u2 8,) + x m ( r l  8, + 217, 8,)1; 

for the first harmonic 

( 1  - X Z )  24; = x, u; + 2(F, - u,) + X m 2  u1 - [yl(u;, + :u;) + u; yo,  + 2u,, u1 

+ x,(T, u1 + 21; u2)l; 



(1 - XZ) 2.4; = x, 24; + 2 ( 4  - u, - u, u,) + Xm4 u, - y ,  ul, - g y ,  u; + u?) + x ,  TI u1 ; 

(1 -9)); = 2 m ( F , + u , ) + x , , r , - ( y 0 r ~ + ~ , r ~ ) + x , ( 4 x , y 2 + y ~ ) ;  

(1 - x') F,' = 2 m r ;  - xm4 y ,  + rl(i< - x ,  yl) ; 

y ;  = u,+4~,r,;  xm4 = 4x,,; X ,  = x 2 + y 0 ;  

(1 -xZ) #; = x2 9; +x, ,  9, - Pr[y ,  9; + 9;y,  + 2.4, 9, + 24, 9, - x ,  r, 9, + g y ,  9; + u1 8J; 
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